UnsafeMutableBufferPointer

struct UnsafeMutableBufferPointer
Inheritance CustomDebugStringConvertible, MutableCollection, RandomAccessCollection, Sequence
Associated Types
public typealias Index = Int

Valid indices consist of the position of every element and a "past the end" position that's not valid for use as a subscript argument.

public typealias Indices = Range<Int>
public typealias Iterator = UnsafeBufferPointer<Element>.Iterator

Initializers

init init(mutating:) Required

Creates a mutable typed buffer pointer referencing the same memory as the given immutable buffer pointer.

  • Parameter other: The immutable buffer pointer to convert.

Declaration

@inlinable public init(mutating other: UnsafeBufferPointer<Element>)
init init(rebasing:) Required

Creates a buffer over the same memory as the given buffer slice.

The new buffer represents the same region of memory as slice, but is indexed starting at zero instead of sharing indices with the original buffer. For example:

let buffer = returnsABuffer()
let n = 5
let slice = buffer[n...]
let rebased = UnsafeMutableBufferPointer(rebasing: slice)

After rebasing slice as the rebased buffer, the following are true:

  • Parameter slice: The buffer slice to rebase.

Declaration

@inlinable public init(rebasing slice: Slice<UnsafeMutableBufferPointer<Element>>)
init init(start:count:) Required

Creates a new buffer pointer over the specified number of contiguous instances beginning at the given pointer.

Declaration

@inlinable public init(start: UnsafeMutablePointer<Element>?, count: Int)

Instance Variables

var baseAddress Required

A pointer to the first element of the buffer.

If the baseAddress of this buffer is nil, the count is zero. However, a buffer can have a count of zero even with a non-nil base address.

Declaration

var baseAddress: UnsafeMutablePointer<Element>?
let count Required

The number of elements in the buffer.

If the baseAddress of this buffer is nil, the count is zero. However, a buffer can have a count of zero even with a non-nil base address.

Declaration

let count: Int
var debugDescription Required

A textual representation of the buffer, suitable for debugging.

Declaration

var debugDescription: String
var endIndex Required

The "past the end" position---that is, the position one greater than the last valid subscript argument.

The endIndex property of an UnsafeMutableBufferPointer instance is always identical to count.

Declaration

var endIndex: Int
var indices Required

The indices that are valid for subscripting the collection, in ascending order.

A collection's indices property can hold a strong reference to the collection itself, causing the collection to be nonuniquely referenced. If you mutate the collection while iterating over its indices, a strong reference can result in an unexpected copy of the collection. To avoid the unexpected copy, use the index(after:) method starting with startIndex to produce indices instead.

var c = MyFancyCollection([10, 20, 30, 40, 50])
var i = c.startIndex
while i != c.endIndex {
    c[i] /= 5
    i = c.index(after: i)
}
// c == MyFancyCollection([2, 4, 6, 8, 10])

Declaration

var indices: UnsafeMutableBufferPointer<Element>.Indices
var lazy Required

A sequence containing the same elements as this sequence, but on which some operations, such as map and filter, are implemented lazily.

Declaration

var lazy: LazySequence<Self>
var startIndex Required

The index of the first element in a nonempty buffer.

The startIndex property of an UnsafeMutableBufferPointer instance is always zero.

Declaration

var startIndex: Int
var underestimatedCount Required

A value less than or equal to the number of elements in the sequence, calculated nondestructively.

The default implementation returns 0. If you provide your own implementation, make sure to compute the value nondestructively.

Complexity: O(1), except if the sequence also conforms to Collection. In this case, see the documentation of Collection.underestimatedCount.

Declaration

var underestimatedCount: Int

Subscripts

subscript subscript(bounds:) Required

Accesses a contiguous subrange of the collection's elements.

The accessed slice uses the same indices for the same elements as the original collection. Always use the slice's startIndex property instead of assuming that its indices start at a particular value.

This example demonstrates getting a slice of an array of strings, finding the index of one of the strings in the slice, and then using that index in the original array.

let streets = ["Adams", "Bryant", "Channing", "Douglas", "Evarts"]
let streetsSlice = streets[2 ..< streets.endIndex]
print(streetsSlice)
// Prints "["Channing", "Douglas", "Evarts"]"

let index = streetsSlice.firstIndex(of: "Evarts")    // 4
streets[index!] = "Eustace"
print(streets[index!])
// Prints "Eustace"
  • Parameter bounds: A range of the collection's indices. The bounds of the range must be valid indices of the collection.

Complexity: O(1)

Declaration

@inlinable public subscript(bounds: Range<Self.Index>) -> Slice<Self>
subscript subscript(r:) Required

Declaration

@inlinable public subscript<R>(r: R) where R: RangeExpression, Self.Index == R.Bound -> Self.SubSequence
subscript subscript(x:) Required

Declaration

@inlinable public subscript(x: (UnboundedRange_) -> ()) -> Self.SubSequence

Instance Methods

func allSatisfy(_ predicate: (Self.Element) throws -> Bool) rethrows -> Bool Required

Returns a Boolean value indicating whether every element of a sequence satisfies a given predicate.

The following code uses this method to test whether all the names in an array have at least five characters:

let names = ["Sofia", "Camilla", "Martina", "Mateo", "Nicolás"]
let allHaveAtLeastFive = names.allSatisfy({ $0.count >= 5 })
// allHaveAtLeastFive == true
  • Parameter predicate: A closure that takes an element of the sequence as its argument and returns a Boolean value that indicates whether the passed element satisfies a condition.

Complexity: O(n), where n is the length of the sequence.

Declaration

@inlinable public func allSatisfy(_ predicate: (Self.Element) throws -> Bool) rethrows -> Bool
func assign(repeating repeatedValue: Element) Required

Assigns every element in this buffer's memory to a copy of the given value.

The buffer’s memory must be initialized or the buffer's Element must be a trivial type.

Warning: All buffer elements must be initialized before calling this. Assigning to part of the buffer must be done using the assign(repeating:count:)`` method on the buffer’s baseAddress`.

Declaration

@inlinable public func assign(repeating repeatedValue: Element)
func compactMap(_ transform: (Self.Element) throws -> ElementOfResult?) rethrows -> [ElementOfResult] Required

Returns an array containing the non-nil results of calling the given transformation with each element of this sequence.

Use this method to receive an array of non-optional values when your transformation produces an optional value.

In this example, note the difference in the result of using map and compactMap with a transformation that returns an optional Int value.

let possibleNumbers = ["1", "2", "three", "///4///", "5"]

let mapped: [Int?] = possibleNumbers.map { str in Int(str) }
// [1, 2, nil, nil, 5]

let compactMapped: [Int] = possibleNumbers.compactMap { str in Int(str) }
// [1, 2, 5]
  • Parameter transform: A closure that accepts an element of this sequence as its argument and returns an optional value.

Complexity: O(m + n), where n is the length of this sequence and m is the length of the result.

Declaration

@inlinable public func compactMap<ElementOfResult>(_ transform: (Self.Element) throws -> ElementOfResult?) rethrows -> [ElementOfResult]
func contains(where predicate: (Self.Element) throws -> Bool) rethrows -> Bool Required

Returns a Boolean value indicating whether the sequence contains an element that satisfies the given predicate.

You can use the predicate to check for an element of a type that doesn't conform to the Equatable protocol, such as the HTTPResponse enumeration in this example.

enum HTTPResponse {
    case ok
    case error(Int)
}

let lastThreeResponses: [HTTPResponse] = [.ok, .ok, .error(404)]
let hadError = lastThreeResponses.contains { element in
    if case .error = element {
        return true
    } else {
        return false
    }
}
// 'hadError' == true

Alternatively, a predicate can be satisfied by a range of Equatable elements or a general condition. This example shows how you can check an array for an expense greater than $100.

let expenses = [21.37, 55.21, 9.32, 10.18, 388.77, 11.41]
let hasBigPurchase = expenses.contains { $0 > 100 }
// 'hasBigPurchase' == true
  • Parameter predicate: A closure that takes an element of the sequence as its argument and returns a Boolean value that indicates whether the passed element represents a match.

Complexity: O(n), where n is the length of the sequence.

Declaration

@inlinable public func contains(where predicate: (Self.Element) throws -> Bool) rethrows -> Bool
func deallocate() Required

Deallocates the memory block previously allocated at this buffer pointer’s base address.

This buffer pointer's baseAddress must be nil or a pointer to a memory block previously returned by a Swift allocation method. If baseAddress is nil, this function does nothing. Otherwise, the memory must not be initialized or Pointee must be a trivial type. This buffer pointer's count must be equal to the originally allocated size of the memory block.

Declaration

@inlinable public func deallocate()
func distance(from start: Int, to end: Int) -> Int Required

Returns the distance between two indices.

Unless the collection conforms to the BidirectionalCollection protocol, start must be less than or equal to end.

Complexity: O(1)

Declaration

@inlinable public func distance(from start: Int, to end: Int) -> Int
func drop(while predicate: (Self.Element) throws -> Bool) rethrows -> DropWhileSequence<Self> Required

Returns a sequence by skipping the initial, consecutive elements that satisfy the given predicate.

The following example uses the drop(while:) method to skip over the positive numbers at the beginning of the numbers array. The result begins with the first element of numbers that does not satisfy predicate.

let numbers = [3, 7, 4, -2, 9, -6, 10, 1]
let startingWithNegative = numbers.drop(while: { $0 > 0 })
// startingWithNegative == [-2, 9, -6, 10, 1]

If predicate matches every element in the sequence, the result is an empty sequence.

  • Parameter predicate: A closure that takes an element of the sequence as its argument and returns a Boolean value indicating whether the element should be included in the result.

Complexity: O(k), where k is the number of elements to drop from the beginning of the sequence.

Declaration

@inlinable public func drop(while predicate: (Self.Element) throws -> Bool) rethrows -> DropWhileSequence<Self>
func dropFirst(_ k: Int = 1) -> DropFirstSequence<Self> Required

Returns a sequence containing all but the given number of initial elements.

If the number of elements to drop exceeds the number of elements in the sequence, the result is an empty sequence.

let numbers = [1, 2, 3, 4, 5]
print(numbers.dropFirst(2))
// Prints "[3, 4, 5]"
print(numbers.dropFirst(10))
// Prints "[]"
  • Parameter k: The number of elements to drop from the beginning of the sequence. k must be greater than or equal to zero.

Complexity: O(1), with O(k) deferred to each iteration of the result, where k is the number of elements to drop from the beginning of the sequence.

Declaration

@inlinable public func dropFirst(_ k: Int = 1) -> DropFirstSequence<Self>
func dropLast(_ k: Int = 1) -> [Self.Element] Required

Returns a sequence containing all but the given number of final elements.

The sequence must be finite. If the number of elements to drop exceeds the number of elements in the sequence, the result is an empty sequence.

let numbers = [1, 2, 3, 4, 5]
print(numbers.dropLast(2))
// Prints "[1, 2, 3]"
print(numbers.dropLast(10))
// Prints "[]"
  • Parameter n: The number of elements to drop off the end of the sequence. n must be greater than or equal to zero.

Complexity: O(n), where n is the length of the sequence.

Declaration

@inlinable public func dropLast(_ k: Int = 1) -> [Self.Element]
func elementsEqual(_ other: OtherSequence, by areEquivalent: (Self.Element, OtherSequence.Element) throws -> Bool) rethrows -> Bool Required

Returns a Boolean value indicating whether this sequence and another sequence contain equivalent elements in the same order, using the given predicate as the equivalence test.

At least one of the sequences must be finite.

The predicate must be a equivalence relation over the elements. That is, for any elements a, b, and c, the following conditions must hold:

Complexity: O(m), where m is the lesser of the length of the sequence and the length of other.

Declaration

@inlinable public func elementsEqual<OtherSequence>(_ other: OtherSequence, by areEquivalent: (Self.Element, OtherSequence.Element) throws -> Bool) rethrows -> Bool where OtherSequence: Sequence
func enumerated() -> EnumeratedSequence<Self> Required

Returns a sequence of pairs (n, x), where n represents a consecutive integer starting at zero and x represents an element of the sequence.

This example enumerates the characters of the string "Swift" and prints each character along with its place in the string.

for (n, c) in "Swift".enumerated() {
    print("\(n): '\(c)'")
}
// Prints "0: 'S'"
// Prints "1: 'w'"
// Prints "2: 'i'"
// Prints "3: 'f'"
// Prints "4: 't'"

When you enumerate a collection, the integer part of each pair is a counter for the enumeration, but is not necessarily the index of the paired value. These counters can be used as indices only in instances of zero-based, integer-indexed collections, such as Array and ContiguousArray. For other collections the counters may be out of range or of the wrong type to use as an index. To iterate over the elements of a collection with its indices, use the zip(_:_:) function.

This example iterates over the indices and elements of a set, building a list consisting of indices of names with five or fewer letters.

let names: Set = ["Sofia", "Camilla", "Martina", "Mateo", "Nicolás"]
var shorterIndices: [Set<String>.Index] = []
for (i, name) in zip(names.indices, names) {
    if name.count <= 5 {
        shorterIndices.append(i)
    }
}

Now that the shorterIndices array holds the indices of the shorter names in the names set, you can use those indices to access elements in the set.

for i in shorterIndices {
    print(names[i])
}
// Prints "Sofia"
// Prints "Mateo"

Complexity: O(1)

Declaration

@inlinable public func enumerated() -> EnumeratedSequence<Self>
func filter(_ isIncluded: (Self.Element) throws -> Bool) rethrows -> [Self.Element] Required

Returns an array containing, in order, the elements of the sequence that satisfy the given predicate.

In this example, filter(_:) is used to include only names shorter than five characters.

let cast = ["Vivien", "Marlon", "Kim", "Karl"]
let shortNames = cast.filter { $0.count < 5 }
print(shortNames)
// Prints "["Kim", "Karl"]"
  • Parameter isIncluded: A closure that takes an element of the sequence as its argument and returns a Boolean value indicating whether the element should be included in the returned array.

Complexity: O(n), where n is the length of the sequence.

Declaration

@inlinable public func filter(_ isIncluded: (Self.Element) throws -> Bool) rethrows -> [Self.Element]
func first(where predicate: (Self.Element) throws -> Bool) rethrows -> Self.Element? Required

Returns the first element of the sequence that satisfies the given predicate.

The following example uses the first(where:) method to find the first negative number in an array of integers:

let numbers = [3, 7, 4, -2, 9, -6, 10, 1]
if let firstNegative = numbers.first(where: { $0 < 0 }) {
    print("The first negative number is \(firstNegative).")
}
// Prints "The first negative number is -2."
  • Parameter predicate: A closure that takes an element of the sequence as its argument and returns a Boolean value indicating whether the element is a match.

Complexity: O(n), where n is the length of the sequence.

Declaration

@inlinable public func first(where predicate: (Self.Element) throws -> Bool) rethrows -> Self.Element?
func flatMap(_ transform: (Self.Element) throws -> SegmentOfResult) rethrows -> [SegmentOfResult.Element] Required

Returns an array containing the concatenated results of calling the given transformation with each element of this sequence.

Use this method to receive a single-level collection when your transformation produces a sequence or collection for each element.

In this example, note the difference in the result of using map and flatMap with a transformation that returns an array.

let numbers = [1, 2, 3, 4]

let mapped = numbers.map { Array(repeating: $0, count: $0) }
// [[1], [2, 2], [3, 3, 3], [4, 4, 4, 4]]

let flatMapped = numbers.flatMap { Array(repeating: $0, count: $0) }
// [1, 2, 2, 3, 3, 3, 4, 4, 4, 4]

In fact, s.flatMap(transform) is equivalent to Array(s.map(transform).joined()).

  • Parameter transform: A closure that accepts an element of this sequence as its argument and returns a sequence or collection.

Complexity: O(m + n), where n is the length of this sequence and m is the length of the result.

Declaration

@inlinable public func flatMap<SegmentOfResult>(_ transform: (Self.Element) throws -> SegmentOfResult) rethrows -> [SegmentOfResult.Element] where SegmentOfResult: Sequence
func flatMap(_ transform: (Self.Element) throws -> ElementOfResult?) rethrows -> [ElementOfResult] Required

Declaration

@available(swift, deprecated: 4.1, renamed: "compactMap(_:)", message: "Please use compactMap(_:) for the case where closure returns an optional value") public func flatMap<ElementOfResult>(_ transform: (Self.Element) throws -> ElementOfResult?) rethrows -> [ElementOfResult]
func forEach(_ body: (Self.Element) throws -> Void) rethrows Required

Calls the given closure on each element in the sequence in the same order as a for-in loop.

The two loops in the following example produce the same output:

let numberWords = ["one", "two", "three"]
for word in numberWords {
    print(word)
}
// Prints "one"
// Prints "two"
// Prints "three"

numberWords.forEach { word in
    print(word)
}
// Same as above

Using the forEach method is distinct from a for-in loop in two important ways:

  1. You cannot use a break or continue statement to exit the current call of the body closure or skip subsequent calls.
  2. Using the return statement in the body closure will exit only from the current call to body, not from any outer scope, and won't skip subsequent calls.
  • Parameter body: A closure that takes an element of the sequence as a parameter.

Declaration

@inlinable public func forEach(_ body: (Self.Element) throws -> Void) rethrows
func formIndex(after i: inout Int) Required

Replaces the given index with its successor.

  • Parameter i: A valid index of the collection. i must be less than endIndex.

Declaration

@inlinable public func formIndex(after i: inout Int)
func formIndex(before i: inout Int) Required

Replaces the given index with its predecessor.

  • Parameter i: A valid index of the collection. i must be greater than startIndex.

Declaration

@inlinable public func formIndex(before i: inout Int)
func index(_ i: Int, offsetBy n: Int) -> Int Required

Returns an index that is the specified distance from the given index.

The following example obtains an index advanced four positions from a string's starting index and then prints the character at that position.

let s = "Swift"
let i = s.index(s.startIndex, offsetBy: 4)
print(s[i])
// Prints "t"

The value passed as distance must not offset i beyond the bounds of the collection.

Complexity: O(1)

Declaration

@inlinable public func index(_ i: Int, offsetBy n: Int) -> Int
func index(_ i: Self.Index, offsetBy distance: Int, limitedBy limit: Self.Index) -> Self.Index? Required

Returns an index that is the specified distance from the given index, unless that distance is beyond a given limiting index.

The following example obtains an index advanced four positions from an array's starting index and then prints the element at that position. The operation doesn't require going beyond the limiting numbers.endIndex value, so it succeeds.

let numbers = [10, 20, 30, 40, 50]
let i = numbers.index(numbers.startIndex, offsetBy: 4)
print(numbers[i])
// Prints "50"

The next example attempts to retrieve an index ten positions from numbers.startIndex, but fails, because that distance is beyond the index passed as limit.

let j = numbers.index(numbers.startIndex,
                      offsetBy: 10,
                      limitedBy: numbers.endIndex)
print(j)
// Prints "nil"

The value passed as distance must not offset i beyond the bounds of the collection, unless the index passed as limit prevents offsetting beyond those bounds.

Complexity: O(1)

Declaration

@inlinable public func index(_ i: Self.Index, offsetBy distance: Int, limitedBy limit: Self.Index) -> Self.Index?
func index(_ i: Int, offsetBy n: Int, limitedBy limit: Int) -> Int? Required

Returns an index that is the specified distance from the given index, unless that distance is beyond a given limiting index.

The following example obtains an index advanced four positions from a string's starting index and then prints the character at that position. The operation doesn't require going beyond the limiting s.endIndex value, so it succeeds.

let s = "Swift"
if let i = s.index(s.startIndex, offsetBy: 4, limitedBy: s.endIndex) {
    print(s[i])
}
// Prints "t"

The next example attempts to retrieve an index six positions from s.startIndex but fails, because that distance is beyond the index passed as limit.

let j = s.index(s.startIndex, offsetBy: 6, limitedBy: s.endIndex)
print(j)
// Prints "nil"

The value passed as distance must not offset i beyond the bounds of the collection, unless the index passed as limit prevents offsetting beyond those bounds.

Complexity: O(1)

Declaration

@inlinable public func index(_ i: Int, offsetBy n: Int, limitedBy limit: Int) -> Int?
func index(after i: Int) -> Int Required

Returns the position immediately after the given index.

The successor of an index must be well defined. For an index i into a collection c, calling c.index(after: i) returns the same index every time.

  • Parameter i: A valid index of the collection. i must be less than endIndex.

Declaration

@inlinable public func index(after i: Int) -> Int
func index(before i: Int) -> Int Required

Returns the position immediately before the given index.

  • Parameter i: A valid index of the collection. i must be greater than startIndex.

Declaration

@inlinable public func index(before i: Int) -> Int
func initialize(from source: S) -> (S.Iterator, UnsafeMutableBufferPointer<Element>.Index) Required

Initializes the buffer's memory with the given elements.

When calling the initialize(from:) method on a buffer b, the memory referenced by b must be uninitialized or the Element type must be a trivial type. After the call, the memory referenced by this buffer up to, but not including, the returned index is initialized. The buffer must contain sufficient memory to accommodate source.underestimatedCount.

The returned index is the position of the element in the buffer one past the last element written. If source contains no elements, the returned index is equal to the buffer's startIndex. If source contains an equal or greater number of elements than the buffer can hold, the returned index is equal to the buffer's endIndex.

  • Parameter source: A sequence of elements with which to initializer the buffer.

Declaration

@inlinable public func initialize<S>(from source: S) -> (S.Iterator, UnsafeMutableBufferPointer<Element>.Index) where Element == S.Element, S: Sequence
func initialize(repeating repeatedValue: Element) Required

Initializes every element in this buffer's memory to a copy of the given value.

The destination memory must be uninitialized or the buffer's Element must be a trivial type. After a call to initialize(repeating:), the entire region of memory referenced by this buffer is initialized.

Declaration

@inlinable public func initialize(repeating repeatedValue: Element)
func lexicographicallyPrecedes(_ other: OtherSequence, by areInIncreasingOrder: (Self.Element, Self.Element) throws -> Bool) rethrows -> Bool Required

Returns a Boolean value indicating whether the sequence precedes another sequence in a lexicographical (dictionary) ordering, using the given predicate to compare elements.

The predicate must be a strict weak ordering over the elements. That is, for any elements a, b, and c, the following conditions must hold:

Note: This method implements the mathematical notion of lexicographical ordering, which has no connection to Unicode. If you are sorting strings to present to the end user, use String APIs that perform localized comparison instead.

Complexity: O(m), where m is the lesser of the length of the sequence and the length of other.

Declaration

@inlinable public func lexicographicallyPrecedes<OtherSequence>(_ other: OtherSequence, by areInIncreasingOrder: (Self.Element, Self.Element) throws -> Bool) rethrows -> Bool where OtherSequence: Sequence, Self.Element == OtherSequence.Element
func makeIterator() -> UnsafeMutableBufferPointer<Element>.Iterator Required

Returns an iterator over the elements of this buffer.

Declaration

@inlinable public func makeIterator() -> UnsafeMutableBufferPointer<Element>.Iterator
func map(_ transform: (Self.Element) throws -> T) rethrows -> [T] Required

Returns an array containing the results of mapping the given closure over the sequence's elements.

In this example, map is used first to convert the names in the array to lowercase strings and then to count their characters.

let cast = ["Vivien", "Marlon", "Kim", "Karl"]
let lowercaseNames = cast.map { $0.lowercased() }
// 'lowercaseNames' == ["vivien", "marlon", "kim", "karl"]
let letterCounts = cast.map { $0.count }
// 'letterCounts' == [6, 6, 3, 4]
  • Parameter transform: A mapping closure. transform accepts an element of this sequence as its parameter and returns a transformed value of the same or of a different type.

Complexity: O(n), where n is the length of the sequence.

Declaration

@inlinable public func map<T>(_ transform: (Self.Element) throws -> T) rethrows -> [T]
func max(by areInIncreasingOrder: (Self.Element, Self.Element) throws -> Bool) rethrows -> Self.Element? Required

Returns the maximum element in the sequence, using the given predicate as the comparison between elements.

The predicate must be a strict weak ordering over the elements. That is, for any elements a, b, and c, the following conditions must hold:

This example shows how to use the max(by:) method on a dictionary to find the key-value pair with the highest value.

let hues = ["Heliotrope": 296, "Coral": 16, "Aquamarine": 156]
let greatestHue = hues.max { a, b in a.value < b.value }
print(greatestHue)
// Prints "Optional(("Heliotrope", 296))"
  • Parameter areInIncreasingOrder: A predicate that returns true if its first argument should be ordered before its second argument; otherwise, false.

Complexity: O(n), where n is the length of the sequence.

Declaration

@warn_unqualified_access @inlinable public func max(by areInIncreasingOrder: (Self.Element, Self.Element) throws -> Bool) rethrows -> Self.Element?
func min(by areInIncreasingOrder: (Self.Element, Self.Element) throws -> Bool) rethrows -> Self.Element? Required

Returns the minimum element in the sequence, using the given predicate as the comparison between elements.

The predicate must be a strict weak ordering over the elements. That is, for any elements a, b, and c, the following conditions must hold:

This example shows how to use the min(by:) method on a dictionary to find the key-value pair with the lowest value.

let hues = ["Heliotrope": 296, "Coral": 16, "Aquamarine": 156]
let leastHue = hues.min { a, b in a.value < b.value }
print(leastHue)
// Prints "Optional(("Coral", 16))"
  • Parameter areInIncreasingOrder: A predicate that returns true if its first argument should be ordered before its second argument; otherwise, false.

Complexity: O(n), where n is the length of the sequence.

Declaration

@warn_unqualified_access @inlinable public func min(by areInIncreasingOrder: (Self.Element, Self.Element) throws -> Bool) rethrows -> Self.Element?
func partition(by belongsInSecondPartition: (Self.Element) throws -> Bool) rethrows -> Self.Index Required

Reorders the elements of the collection such that all the elements that match the given predicate are after all the elements that don't match.

After partitioning a collection, there is a pivot index p where no element before p satisfies the belongsInSecondPartition predicate and every element at or after p satisfies belongsInSecondPartition.

In the following example, an array of numbers is partitioned by a predicate that matches elements greater than 30.

var numbers = [30, 40, 20, 30, 30, 60, 10]
let p = numbers.partition(by: { $0 > 30 })
// p == 5
// numbers == [30, 10, 20, 30, 30, 60, 40]

The numbers array is now arranged in two partitions. The first partition, numbers[..<p], is made up of the elements that are not greater than 30. The second partition, numbers[p...], is made up of the elements that are greater than 30.

let first = numbers[..<p]
// first == [30, 10, 20, 30, 30]
let second = numbers[p...]
// second == [60, 40]
  • Parameter belongsInSecondPartition: A predicate used to partition the collection. All elements satisfying this predicate are ordered after all elements not satisfying it.

Complexity: O(n), where n is the length of the collection.

Declaration

@inlinable public mutating func partition(by belongsInSecondPartition: (Self.Element) throws -> Bool) rethrows -> Self.Index
func prefix(_ maxLength: Int) -> PrefixSequence<Self> Required

Returns a sequence, up to the specified maximum length, containing the initial elements of the sequence.

If the maximum length exceeds the number of elements in the sequence, the result contains all the elements in the sequence.

let numbers = [1, 2, 3, 4, 5]
print(numbers.prefix(2))
// Prints "[1, 2]"
print(numbers.prefix(10))
// Prints "[1, 2, 3, 4, 5]"
  • Parameter maxLength: The maximum number of elements to return. The value of maxLength must be greater than or equal to zero.

Complexity: O(1)

Declaration

@inlinable public func prefix(_ maxLength: Int) -> PrefixSequence<Self>
func prefix(while predicate: (Self.Element) throws -> Bool) rethrows -> [Self.Element] Required

Returns a sequence containing the initial, consecutive elements that satisfy the given predicate.

The following example uses the prefix(while:) method to find the positive numbers at the beginning of the numbers array. Every element of numbers up to, but not including, the first negative value is included in the result.

let numbers = [3, 7, 4, -2, 9, -6, 10, 1]
let positivePrefix = numbers.prefix(while: { $0 > 0 })
// positivePrefix == [3, 7, 4]

If predicate matches every element in the sequence, the resulting sequence contains every element of the sequence.

  • Parameter predicate: A closure that takes an element of the sequence as its argument and returns a Boolean value indicating whether the element should be included in the result.

Complexity: O(k), where k is the length of the result.

Declaration

@inlinable public func prefix(while predicate: (Self.Element) throws -> Bool) rethrows -> [Self.Element]
func reduce(_ initialResult: Result, _ nextPartialResult: (Result, Self.Element) throws -> Result) rethrows -> Result Required

Returns the result of combining the elements of the sequence using the given closure.

Use the reduce(_:_:) method to produce a single value from the elements of an entire sequence. For example, you can use this method on an array of numbers to find their sum or product.

The nextPartialResult closure is called sequentially with an accumulating value initialized to initialResult and each element of the sequence. This example shows how to find the sum of an array of numbers.

let numbers = [1, 2, 3, 4]
let numberSum = numbers.reduce(0, { x, y in
    x + y
})
// numberSum == 10

When numbers.reduce(_:_:) is called, the following steps occur:

  1. The nextPartialResult closure is called with initialResult---0 in this case---and the first element of numbers, returning the sum: 1.
  2. The closure is called again repeatedly with the previous call's return value and each element of the sequence.
  3. When the sequence is exhausted, the last value returned from the closure is returned to the caller.

If the sequence has no elements, nextPartialResult is never executed and initialResult is the result of the call to reduce(_:_:).

Complexity: O(n), where n is the length of the sequence.

Declaration

@inlinable public func reduce<Result>(_ initialResult: Result, _ nextPartialResult: (Result, Self.Element) throws -> Result) rethrows -> Result
func reduce(into initialResult: Result, _ updateAccumulatingResult: (inout Result, Self.Element) throws -> ()) rethrows -> Result Required

Returns the result of combining the elements of the sequence using the given closure.

Use the reduce(into:_:) method to produce a single value from the elements of an entire sequence. For example, you can use this method on an array of integers to filter adjacent equal entries or count frequencies.

This method is preferred over reduce(_:_:) for efficiency when the result is a copy-on-write type, for example an Array or a Dictionary.

The updateAccumulatingResult closure is called sequentially with a mutable accumulating value initialized to initialResult and each element of the sequence. This example shows how to build a dictionary of letter frequencies of a string.

let letters = "abracadabra"
let letterCount = letters.reduce(into: [:]) { counts, letter in
    counts[letter, default: 0] += 1
}
// letterCount == ["a": 5, "b": 2, "r": 2, "c": 1, "d": 1]

When letters.reduce(into:_:) is called, the following steps occur:

  1. The updateAccumulatingResult closure is called with the initial accumulating value---[:] in this case---and the first character of letters, modifying the accumulating value by setting 1 for the key "a".
  2. The closure is called again repeatedly with the updated accumulating value and each element of the sequence.
  3. When the sequence is exhausted, the accumulating value is returned to the caller.

If the sequence has no elements, updateAccumulatingResult is never executed and initialResult is the result of the call to reduce(into:_:).

Complexity: O(n), where n is the length of the sequence.

Declaration

@inlinable public func reduce<Result>(into initialResult: Result, _ updateAccumulatingResult: (inout Result, Self.Element) throws -> ()) rethrows -> Result
func reversed() -> [Self.Element] Required

Returns an array containing the elements of this sequence in reverse order.

The sequence must be finite.

Complexity: O(n), where n is the length of the sequence.

Declaration

@inlinable public func reversed() -> [Self.Element]
func shuffled() -> [Self.Element] Required

Returns the elements of the sequence, shuffled.

For example, you can shuffle the numbers between 0 and 9 by calling the shuffled() method on that range:

let numbers = 0...9
let shuffledNumbers = numbers.shuffled()
// shuffledNumbers == [1, 7, 6, 2, 8, 9, 4, 3, 5, 0]

This method is equivalent to calling shuffled(using:), passing in the system's default random generator.

Complexity: O(n), where n is the length of the sequence.

Declaration

@inlinable public func shuffled() -> [Self.Element]
func shuffled(using generator: inout T) -> [Self.Element] Required

Returns the elements of the sequence, shuffled using the given generator as a source for randomness.

You use this method to randomize the elements of a sequence when you are using a custom random number generator. For example, you can shuffle the numbers between 0 and 9 by calling the shuffled(using:) method on that range:

let numbers = 0...9
let shuffledNumbers = numbers.shuffled(using: &myGenerator)
// shuffledNumbers == [8, 9, 4, 3, 2, 6, 7, 0, 5, 1]
  • Parameter generator: The random number generator to use when shuffling the sequence.

Complexity: O(n), where n is the length of the sequence.

Note: The algorithm used to shuffle a sequence may change in a future version of Swift. If you're passing a generator that results in the same shuffled order each time you run your program, that sequence may change when your program is compiled using a different version of Swift.

Declaration

@inlinable public func shuffled<T>(using generator: inout T) -> [Self.Element] where T: RandomNumberGenerator
func sorted(by areInIncreasingOrder: (Self.Element, Self.Element) throws -> Bool) rethrows -> [Self.Element] Required

Returns the elements of the sequence, sorted using the given predicate as the comparison between elements.

When you want to sort a sequence of elements that don't conform to the Comparable protocol, pass a predicate to this method that returns true when the first element should be ordered before the second. The elements of the resulting array are ordered according to the given predicate.

In the following example, the predicate provides an ordering for an array of a custom HTTPResponse type. The predicate orders errors before successes and sorts the error responses by their error code.

enum HTTPResponse {
    case ok
    case error(Int)
}

let responses: [HTTPResponse] = [.error(500), .ok, .ok, .error(404), .error(403)]
let sortedResponses = responses.sorted {
    switch ($0, $1) {
    // Order errors by code
    case let (.error(aCode), .error(bCode)):
        return aCode < bCode

    // All successes are equivalent, so none is before any other
    case (.ok, .ok): return false

    // Order errors before successes
    case (.error, .ok): return true
    case (.ok, .error): return false
    }
}
print(sortedResponses)
// Prints "[.error(403), .error(404), .error(500), .ok, .ok]"

You also use this method to sort elements that conform to the Comparable protocol in descending order. To sort your sequence in descending order, pass the greater-than operator (>) as the areInIncreasingOrder parameter.

let students: Set = ["Kofi", "Abena", "Peter", "Kweku", "Akosua"]
let descendingStudents = students.sorted(by: >)
print(descendingStudents)
// Prints "["Peter", "Kweku", "Kofi", "Akosua", "Abena"]"

Calling the related sorted() method is equivalent to calling this method and passing the less-than operator (<) as the predicate.

print(students.sorted())
// Prints "["Abena", "Akosua", "Kofi", "Kweku", "Peter"]"
print(students.sorted(by: <))
// Prints "["Abena", "Akosua", "Kofi", "Kweku", "Peter"]"

The predicate must be a strict weak ordering over the elements. That is, for any elements a, b, and c, the following conditions must hold:

The sorting algorithm is not guaranteed to be stable. A stable sort preserves the relative order of elements for which areInIncreasingOrder does not establish an order.

  • Parameter areInIncreasingOrder: A predicate that returns true if its first argument should be ordered before its second argument; otherwise, false.

Complexity: O(n log n), where n is the length of the sequence.

Declaration

@inlinable public func sorted(by areInIncreasingOrder: (Self.Element, Self.Element) throws -> Bool) rethrows -> [Self.Element]
func split(maxSplits: Int = Int.max, omittingEmptySubsequences: Bool = true, whereSeparator isSeparator: (Self.Element) throws -> Bool) rethrows -> [ArraySlice<Self.Element>] Required

Returns the longest possible subsequences of the sequence, in order, that don't contain elements satisfying the given predicate. Elements that are used to split the sequence are not returned as part of any subsequence.

The following examples show the effects of the maxSplits and omittingEmptySubsequences parameters when splitting a string using a closure that matches spaces. The first use of split returns each word that was originally separated by one or more spaces.

let line = "BLANCHE:   I don't want realism. I want magic!"
print(line.split(whereSeparator: { $0 == " " })
          .map(String.init))
// Prints "["BLANCHE:", "I", "don\'t", "want", "realism.", "I", "want", "magic!"]"

The second example passes 1 for the maxSplits parameter, so the original string is split just once, into two new strings.

print(
   line.split(maxSplits: 1, whereSeparator: { $0 == " " })
                  .map(String.init))
// Prints "["BLANCHE:", "  I don\'t want realism. I want magic!"]"

The final example passes true for the allowEmptySlices parameter, so the returned array contains empty strings where spaces were repeated.

print(
    line.split(
        omittingEmptySubsequences: false,
        whereSeparator: { $0 == " " }
    ).map(String.init))
// Prints "["BLANCHE:", "", "", "I", "don\'t", "want", "realism.", "I", "want", "magic!"]"

Complexity: O(n), where n is the length of the sequence.

Declaration

@inlinable public func split(maxSplits: Int = Int.max, omittingEmptySubsequences: Bool = true, whereSeparator isSeparator: (Self.Element) throws -> Bool) rethrows -> [ArraySlice<Self.Element>]
func starts(with possiblePrefix: PossiblePrefix, by areEquivalent: (Self.Element, PossiblePrefix.Element) throws -> Bool) rethrows -> Bool Required

Returns a Boolean value indicating whether the initial elements of the sequence are equivalent to the elements in another sequence, using the given predicate as the equivalence test.

The predicate must be a equivalence relation over the elements. That is, for any elements a, b, and c, the following conditions must hold:

Complexity: O(m), where m is the lesser of the length of the sequence and the length of possiblePrefix.

Declaration

@inlinable public func starts<PossiblePrefix>(with possiblePrefix: PossiblePrefix, by areEquivalent: (Self.Element, PossiblePrefix.Element) throws -> Bool) rethrows -> Bool where PossiblePrefix: Sequence
func suffix(_ maxLength: Int) -> [Self.Element] Required

Returns a subsequence, up to the given maximum length, containing the final elements of the sequence.

The sequence must be finite. If the maximum length exceeds the number of elements in the sequence, the result contains all the elements in the sequence.

let numbers = [1, 2, 3, 4, 5]
print(numbers.suffix(2))
// Prints "[4, 5]"
print(numbers.suffix(10))
// Prints "[1, 2, 3, 4, 5]"
  • Parameter maxLength: The maximum number of elements to return. The value of maxLength must be greater than or equal to zero.

Complexity: O(n), where n is the length of the sequence.

Declaration

@inlinable public func suffix(_ maxLength: Int) -> [Self.Element]
func swapAt(_ i: Int, _ j: Int) Required

Exchanges the values at the specified indices of the buffer.

Both parameters must be valid indices of the buffer, and not equal to endIndex. Passing the same index as both i and j has no effect.

Declaration

@inlinable public func swapAt(_ i: Int, _ j: Int)
func swapAt(_ i: Self.Index, _ j: Self.Index) Required

Exchanges the values at the specified indices of the collection.

Both parameters must be valid indices of the collection that are not equal to endIndex. Calling swapAt(_:_:) with the same index as both i and j has no effect.

Complexity: O(1)

Declaration

@inlinable public mutating func swapAt(_ i: Self.Index, _ j: Self.Index)
func withContiguousMutableStorageIfAvailable(_ body: (inout UnsafeMutableBufferPointer<Self.Element>) throws -> R) rethrows -> R? Required

Call body(p), where p is a pointer to the collection's mutable contiguous storage. If no such storage exists, it is first created. If the collection does not support an internal representation in a form of mutable contiguous storage, body is not called and nil is returned.

Often, the optimizer can eliminate bounds- and uniqueness-checks within an algorithm, but when that fails, invoking the same algorithm on body\ 's argument lets you trade safety for speed.

Declaration

@inlinable public mutating func withContiguousMutableStorageIfAvailable<R>(_ body: (inout UnsafeMutableBufferPointer<Self.Element>) throws -> R) rethrows -> R?
func withContiguousMutableStorageIfAvailable(_ body: (inout UnsafeMutableBufferPointer<Element>) throws -> R) rethrows -> R? Required

Call body(p), where p is a pointer to the collection's mutable contiguous storage. If no such storage exists, it is first created. If the collection does not support an internal representation in a form of mutable contiguous storage, body is not called and nil is returned.

Often, the optimizer can eliminate bounds- and uniqueness-checks within an algorithm, but when that fails, invoking the same algorithm on body\ 's argument lets you trade safety for speed.

Declaration

@inlinable public mutating func withContiguousMutableStorageIfAvailable<R>(_ body: (inout UnsafeMutableBufferPointer<Element>) throws -> R) rethrows -> R?
func withContiguousStorageIfAvailable(_ body: (UnsafeBufferPointer<Self.Element>) throws -> R) rethrows -> R? Required

Call body(p), where p is a pointer to the collection's contiguous storage. If no such storage exists, it is first created. If the collection does not support an internal representation in a form of contiguous storage, body is not called and nil is returned.

A Collection that provides its own implementation of this method must also guarantee that an equivalent buffer of its SubSequence can be generated by advancing the pointer by the distance to the slice's startIndex.

Declaration

@inlinable public func withContiguousStorageIfAvailable<R>(_ body: (UnsafeBufferPointer<Self.Element>) throws -> R) rethrows -> R?
func withContiguousStorageIfAvailable(_ body: (UnsafeBufferPointer<Element>) throws -> R) rethrows -> R? Required

Call body(p), where p is a pointer to the collection's contiguous storage. If no such storage exists, it is first created. If the collection does not support an internal representation in a form of contiguous storage, body is not called and nil is returned.

A Collection that provides its own implementation of this method must also guarantee that an equivalent buffer of its SubSequence can be generated by advancing the pointer by the distance to the slice's startIndex.

Declaration

@inlinable public func withContiguousStorageIfAvailable<R>(_ body: (UnsafeBufferPointer<Element>) throws -> R) rethrows -> R?
func withMemoryRebound(to type: T.Type, _ body: (UnsafeMutableBufferPointer<T>) throws -> Result) rethrows -> Result Required

Executes the given closure while temporarily binding the memory referenced by this buffer to the given type.

Use this method when you have a buffer of memory bound to one type and you need to access that memory as a buffer of another type. Accessing memory as type T requires that the memory be bound to that type. A memory location may only be bound to one type at a time, so accessing the same memory as an unrelated type without first rebinding the memory is undefined.

The entire region of memory referenced by this buffer must be initialized.

Because this buffer's memory is no longer bound to its Element type while the body closure executes, do not access memory using the original buffer from within body. Instead, use the body closure's buffer argument to access the values in memory as instances of type T.

After executing body, this method rebinds memory back to the original Element type.

Note: Only use this method to rebind the buffer's memory to a type with the same size and stride as the currently bound Element type. To bind a region of memory to a type that is a different size, convert the buffer to a raw buffer and use the bindMemory(to:) method.

Declaration

@inlinable public func withMemoryRebound<T, Result>(to type: T.Type, _ body: (UnsafeMutableBufferPointer<T>) throws -> Result) rethrows -> Result

Type Methods

func allocate(capacity count: Int) -> UnsafeMutableBufferPointer<Element> Required

Allocates uninitialized memory for the specified number of instances of type Element.

The resulting buffer references a region of memory that is bound to Element and is count * MemoryLayout<Element>.stride bytes in size.

The following example allocates a buffer that can store four Int instances and then initializes that memory with the elements of a range:

let buffer = UnsafeMutableBufferPointer<Int>.allocate(capacity: 4)
_ = buffer.initialize(from: 1...4)
print(buffer[2])
// Prints "3"

When you allocate memory, always remember to deallocate once you're finished.

buffer.deallocate()
  • Parameter count: The amount of memory to allocate, counted in instances of Element.

Declaration

@inlinable public static func allocate(capacity count: Int) -> UnsafeMutableBufferPointer<Element>